Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;130(3):367-76.
doi: 10.1093/oxfordjournals.jbchem.a002995.

A method for micrometer resolution patterning of primary culture neurons for SPM analysis

Affiliations
Free article

A method for micrometer resolution patterning of primary culture neurons for SPM analysis

P Degenaar et al. J Biochem. 2001 Sep.
Free article

Abstract

In this work we present a method for ultra-fine patterning of primary culture neuron cell growth, which is compatible for scanning near-field optical atomic force microscopy (SNOAM) analysis. SNOAM uses near-field optics to break the fundamental diffraction limit imposed on normal microscopy. SNOAM can achieve sub-100 nm optical resolutions, but requires transparent, open substrates. The ability to do physiological measurements on patterns of neurons, combined with ultra high resolution optical and fluorescent analysis, is useful in the study of long-term potentiation. The patterning method consists of chemical guidance with an element of physical confinement and allows for ultra-fine patterning of neural growth on transparent glass substrates. Substrates consist of microfabricated perfluoropolymer barrier structures on glass. Poly-L-lysine was selectively deposited using a silicone-based microfluidic stencil aligned to the perfluoropolymer/glass substrate. Primary culture neurons were extracted from 8-day-old chicks and grown for 3 days to form good networks. This patterning system shows very specific growth with patterning separations down to the level of individual neurites. Fluorescent imaging was carried out on both cell viability during growth and immuno-tagged microtubule-associated proteins on the neurites. Neurons inside the patterned structures were imaged and analyzed with a tapping mode SNOAM.

PubMed Disclaimer

Publication types

MeSH terms

Substances