Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975;287(3):261-75.
doi: 10.1007/BF00501472.

Selective inhibition by hydrocortisone of 3H-normetanephrine formation during 3H-transmitter release elicited by nerve stimulation in the isolated nerve-muscle preparation of the cat nictitating membrane

Selective inhibition by hydrocortisone of 3H-normetanephrine formation during 3H-transmitter release elicited by nerve stimulation in the isolated nerve-muscle preparation of the cat nictitating membrane

M A Luchelli-Fortis et al. Naunyn Schmiedebergs Arch Pharmacol. 1975.

Abstract

The metabolism of 3H-noradrenaline released by nerve stimulation in the isolated nerve-muscle preparation of the cat nictitating membrane was determined under control conditions and in the presence of hydrocortisone, 28 muM, a concentration which inhibits the high affinity extraneuronal uptake of noradrenaline in this tissue. In the controls the main fraction in the overflow elicited by stimulation at 10 Hz during 2 min was the deaminated glycol, 3H-DOPEG (3,4-dihydroxyphenylglycol), which accounted for 45.2 +/- 2.96% of the total radioactivity. Under these conditions, 3H-noradrenaline represented 30.8 +/- 1.92%, while 3H-normetanephrine accounted for 14.5 +/- 0.94% of the total overflow of radioactivity. During exposure to hydrocortisone there was a selective inhibition in 3H-normetanephrine formation from 3H-noradrenaline released by stimulation while the other fractions were not affected significantly. In contrast to these results, there were no changes in the spontaneous outflow of 3H-normetanephrine during exposure to hydrocortisone. The results obtained support the view that 3H-normetanephrine in spontaneous release originates from the activity of prejunctional catechol-O-methyltransferase. On the other hand, 3H-normetanephrine formed during transmitter release elicited by nerve stimulation is due to the activity of extraneuronal catechol-O-methyltransferase. Access of 3H-noradrenaline released by nerve stimulation to extraneuronal catechol-O-methyltransferase is mediated through the high-affinity, hydrocortisone-sensitive extraneuronal uptake mechanism.

PubMed Disclaimer

References

    1. J Physiol. 1970 Jul;208(3):515-46 - PubMed
    1. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(2):179-94 - PubMed
    1. J Physiol. 1971 Jan;212(2):549-59 - PubMed
    1. Naunyn Schmiedebergs Arch Pharmacol. 1974;286(1):1-48 - PubMed
    1. Biochem Pharmacol. 1973 May 15;22(10):1147-60 - PubMed

MeSH terms

LinkOut - more resources