Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 10;69(12):1391-406.
doi: 10.1016/s0024-3205(01)01222-x.

Inhibition of glucose transport by cyclic GMP in cardiomyocytes

Affiliations

Inhibition of glucose transport by cyclic GMP in cardiomyocytes

C Bergemann et al. Life Sci. .

Abstract

Recent evidence points to a potential role of cyclic GMP (cGMP) in the control of cardiac glucose utilization. The present work examines whether the glucose transport system of cardiac myocyte is a site of this cGMP-dependent regulation. Treatment of isolated rat cardiomyocytes (for 10 min) with the membrane-permeant cGMP analogue 8-(4-chlorophenylthio)-cGMP (8-p-CPT-cGMP, 200 microM) caused a decrease in glucose transport in non-stimulated (basal) myocytes, as well as in cells stimulated with insulin or with the mitochondrial inhibitor oligomycin B by up to 40%. An inhibitory effect was also observed with another cGMP analogue (8-bromo-cGMP), and in cells stimulated by hydrogen peroxide or anoxia. In contrast, 8-p-CPT-cAMP (200 microM), or the beta-adrenergic agonist isoprenaline (which increases cAMP levels) did not depress glucose transport, and even potentiated the effect of insulin. Blockade of endogenous cGMP formation with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) significantly increased basal and insulin-dependent glucose transport (by 25%), whereas addition of the guanylate cyclase activator 3-(5'-hydroxymethyl-2'furyl)-1-benzylindazol (YC-1, 30 microM) produced a depression of glucose transport (by 20%). Confocal laser scanning microscopic studies revealed that cGMP partially prevents the insulin-induced redistribution of the glucose transporter GLUT4 from intracellular stores to the cell surface. These observations suggest that the glucose transport system of cardiomyocytes represents a metabolic target of inhibition by cGMP, and that this regulation occurs at the level of the trafficking of glucose transporters.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources