Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep-Oct;25(5):275-81.
doi: 10.1177/0148607101025005275.

The role of eicosanoids in the process of adaptation following massive bowel resection in the rat

Affiliations

The role of eicosanoids in the process of adaptation following massive bowel resection in the rat

K A Kollman-Bauerly et al. JPEN J Parenter Enteral Nutr. 2001 Sep-Oct.

Abstract

Background: Long chain polyunsaturated fatty acids (LCPUFAs) such as arachidonic acid (AA) and eicosapentaenoic acid (EPA) stimulate intestinal adaptation. Prostaglandins also enhance intestinal adaptation. The purpose of this study was to determine by which eicosanoid pathway dietary arachidonic acid enhances intestinal adaptation. Cyclo-oxygenase or lipoxygenase were selectively inhibited to determine whether either of them enhanced or inhibited adaptation.

Methods: Sixty Sprague-Dawley rats were divided into 2 groups, one receiving an 80% small bowel resection and the other receiving a sham operation. Rats were further divided into groups receiving either a placebo, a general lipoxygenase inhibitor (nordihydroguaiaretic acid [NDGA] at 40 mg/kg per day), or a cyclo-oxygenase-2 inhibitor (Etodolac at 3 mg/kg per day). Rats were pair-fed a diet containing 30% kcal from fat, primarily consisting of AA.

Results: After 14 days, mucosal mass, protein, DNA, and disaccharidase activity were measured in the remaining small intestine. There was a significant decrease in ileal mucosal mass in rats receiving Etodolac and a significant increase in mucosal mass in the duodenum in rats receiving NDGA (both p < .001). Mucosal DNA, protein, and disaccharidase data showed similar trends.

Conclusions: These findings suggest that after small bowel resection, dietary arachidonic acid may facilitate the adaptation process by acting as a substrate for the synthesis of prostaglandins, and not through the derivatives of lipoxygenase such as leukotrienes or thromboxanes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources