Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep 14;913(1):57-67.
doi: 10.1016/s0006-8993(01)02758-5.

Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology

Affiliations

Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology

H J Lüth et al. Brain Res. .

Abstract

The nitric oxide-synthesizing enzyme nitric oxide synthase (NOS) is present in the mammalian brain in three different isoforms, two constitutive enzymes (i.e., neuronal, nNOS, and endothelial eNOS) and one inducible enzyme (iNOS). All three isoforms are aberrantly expressed in Alzheimer's disease giving rise to elevated levels of nitric oxide apparently involved in the pathogenesis of this disease by various different mechanisms including oxidative stress and activation of intracellular signalling mechanisms. It still is a matter of debate, however, whether the abnormal expression of NOS isoforms has some primary importance in the pathogenetic chain and might thus be a potential therapeutic target or only reflects a secondary effect that occurs at more advanced stages of the disease process. To tackle this question, we analysed the expression of both eNOS and iNOS in patients with sporadic AD, in transgenic mice expressing human amyloid precursor protein (APP) with the Swedish double mutation under control of the Thy1 promotor (APP23 mice), and after electrolytic cortical lesion in rat, an experimental paradigm associated with elevated expression of APP. In all three conditions, an astrocytosis was induced accompanied by a strong increase of both iNOS and eNOS. Both NOS isoforms were frequently though not always colocalized. Thus, based on the expression pattern of NOS isoforms three types of astrocytes, expressing only one of the two isoforms or both together could be distinguished. In both AD and transgenic mice eNOS-expressing astrocytes exceeded iNOS-expressing astrocytes in number. Astrocytes with elevated levels of iNOS or eNOS were constantly seen in direct association with Abeta-deposits in AD and transgenic mice and were found in the vicinity of the lesion site in the rat cortex. The results of the present study show that expression of both iNOS and eNOS is increased in activated astrocytes under experimental conditions associated with elevated expression of APP (electrolytic brain lesion) or Abeta-deposition (APP23 transgenic mice). Therefore, it is suggested that altered expression of these NOS isoforms being part of AD pathology is secondary to the amyloid pathology and might not be primarily involved in the pathogenetic chain though it might contribute to the maintenance, self-perpetuation and progression of the neurodegenerative process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources