Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;15(11):1941-52.
doi: 10.1096/fj.01-0075com.

High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock

Affiliations

High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock

G W Cockerill et al. FASEB J. 2001 Sep.

Abstract

High density lipoproteins (HDLs) inhibit the cytokine-induced expression of endothelial cell adhesion molecules both in vitro and in vivo. We examined the ability of HDLs to mediate a functional anti-inflammatory effect by measuring their ability to prevent neutrophil adhesion and transmigration in vitro. Treatment of human endothelial cell cultures with physiologic concentrations of HDLs inhibited neutrophil binding by 68 +/- 5.9% (mean and se, n=6, P<0.05) and neutrophil transmigration by 48.7 +/- 6.7% (n=8, P<0.05). We then examined the effect of HDLs on inflammatory infiltration and subsequent multiple organ dysfunction syndrome (MODS), associated with trauma in a rat model of hemorrhagic shock. Rats given human HDLs (80 mg apo A-I/kg, i.v.) 90 min after hemorrhage (which reduced mean arterial pressure to 50 mmHg) and 1 min before resuscitation showed attenuation of the increases in the serum levels of markers of MODS normally observed in this model. Severe disruption of the architecture of tissues and the extensive cellular infiltration into those tissues were also largely inhibited in animals that received HDLs. Human HDLs attenuate the MODS associated with ischemia and reperfusion injury after hemorrhagic shock in rats.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources