Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 15;10(17):1775-83.
doi: 10.1093/hmg/10.17.1775.

Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females

Affiliations

Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females

V L Sheen et al. Hum Mol Genet. .

Abstract

Periventricular heterotopia (PH) is a human neuronal migration disorder in which many neurons destined for the cerebral cortex fail to migrate. Previous analysis showed heterozygous mutations in the X-linked gene filamin 1 (FLN1), but examined only the first six (of 48) coding exons of the gene and hence did not assess the incidence and functional consequences of FLN1 mutations. Here we perform single-strand conformation polymorphism (SSCP) analysis of FLN1 throughout its entire coding region in six PH pedigrees, 31 sporadic female PH patients and 24 sporadic male PH patients. We detected FLN1 mutations by SSCP in 83% of PH pedigrees and 19% of sporadic females with PH. Moreover, no PH females (0/7 tested) with atypical radiographic features showed FLN1 mutations, suggesting that other genes may cause atypical PH. Surprisingly, 2/24 males analyzed with PH (9%) also carried FLN1 mutations. Whereas FLN1 mutations in PH pedigrees caused severe predicted loss of FLN1 protein function, both male FLN1 mutations were consistent with partial loss of function of the protein. Moreover, sporadic female FLN1 mutations associated with PH appear to cause either severe or partial loss of function. Neither male could be shown to be mosaic for the FLN1 mutation in peripheral blood lymphocytes, suggesting that some neurons in the intact cortex of PH males may be mutant for FLN1 but migrate adequately. These results demonstrate the sensitivity and specificity of DNA testing for FLN1 mutations and have important functional implications for models of FLN1 protein function in neuronal migration.

PubMed Disclaimer

Publication types

MeSH terms