Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;3(9):793-801.
doi: 10.1038/ncb0901-793.

Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC

Affiliations

Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC

A Ryo et al. Nat Cell Biol. 2001 Sep.

Abstract

Phosphorylation on a serine or threonine residue preceding proline (Ser/Thr-Pro) is a key regulatory mechanism, and the conformation of certain phosphorylated Ser/Thr-Pro bonds is regulated specifically by the prolyl isomerase Pin1. Whereas the inhibition of Pin1 induces apoptosis, Pin1 is strikingly overexpressed in a subset of human tumours. Here we show that Pin1 regulates beta-catenin turnover and subcellular localization by interfering with its interaction with adenomatous polyposis coli protein (APC). A differential-display screen reveals that Pin1 increases the transcription of several beta-catenin target genes, including those encoding cyclin D1 and c-Myc. Manipulation of Pin1 levels affects the stability of beta-catenin in vitro. Furthermore, beta-catenin levels are decreased in Pin1-deficient mice but are increased and correlated with Pin1 overexpression in human breast cancer. Pin1 directly binds a phosphorylated Ser-Pro motif next to the APC-binding site in beta-catenin, inhibits its interaction with APC and increases its translocation into the nucleus. Thus, Pin1 is a novel regulator of beta-catenin signalling and its overexpression might contribute to the upregulation of beta-catenin in tumours such as breast cancer, in which APC or beta-catenin mutations are not common.

PubMed Disclaimer

Publication types

MeSH terms