Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989;9(10):223-32.
doi: 10.1016/0273-1177(89)90441-9.

Photoproducts in DNA irradiated in vitro and in vivo under extreme environmental conditions

Affiliations

Photoproducts in DNA irradiated in vitro and in vivo under extreme environmental conditions

E Riklis. Adv Space Res. 1989.

Abstract

UV-irradiated DNA forms different photoproducts in accordance with its state of hydration, and the environment in which the irradiation takes place. Photoproducts in addition to the well-known thymine dimer are produced, some of which probably not recognized due to being heat or acid labile, and milder methods for DNA hydrolysis are needed. The isolation, structure and properties of photoproducts which are formed in UV-irradiated frozen thymine solutions are described. Urea, n-propylurea and dihydrothymine are obtained as photolytic products by high radiation doses in low concentrations of thymine. The cyclobutane cis-anti thymine dimer is obtained at high concentrations of thymine, following several cycles of freezing, thawing and irradiations. A trimer is obtained with 290 nm UV light filtered through Pyrex. It reverts back to thymine dimer and thymine when reirradiated in solution. The cis-syn dimer is obtained at all concentrations of frozen thymine and in a dose dependent form. The adduct 5-hydroxy-6-4' (5'-methylpyrimid 2'-1) dihydrothymine is also obtained. In vacuum-dried thymine or DNA, other photoproducts are formed, including the spore-product, TDHT. Several solvent systems were used to develop chromatograms that allow separation of photoproducts.

PubMed Disclaimer

Similar articles

LinkOut - more resources