Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
- PMID: 11538314
- DOI: 10.1063/1.166141
Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
Abstract
The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state [Physiol. Rev. 9, 399-431 (1929)]. However, recent studies [Phys. Rev. Lett. 70, 1343-1346 (1993); Fractals in Biology and Medicine (Birkhauser-Verlag, Basel, 1994), pp. 55-65] reveal that under normal conditions, beat-to-beat fluctuations in heart rate display the kind of long-range correlations typically exhibited by dynamical systems far from equilibrium [Phys. Rev. Lett. 59, 381-384 (1987)]. In contrast, heart rate time series from patients with severe congestive heart failure show a breakdown of this long-range correlation behavior. We describe a new method--detrended fluctuation analysis (DFA)--for quantifying this correlation property in non-stationary physiological time series. Application of this technique shows evidence for a crossover phenomenon associated with a change in short and long-range scaling exponents. This method may be of use in distinguishing healthy from pathologic data sets based on differences in these scaling properties.
Similar articles
-
Interpretation of heart rate variability via detrended fluctuation analysis and alphabeta filter.Chaos. 2003 Jun;13(2):467-75. doi: 10.1063/1.1562051. Chaos. 2003. PMID: 12777109
-
Detrended fluctuation analysis of short-term heart rate variability in late pregnant women.Auton Neurosci. 2009 Oct 5;150(1-2):122-6. doi: 10.1016/j.autneu.2009.05.241. Epub 2009 May 22. Auton Neurosci. 2009. PMID: 19464962
-
Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis.Nature. 1996 Sep 26;383(6598):323-7. doi: 10.1038/383323a0. Nature. 1996. PMID: 8848043
-
Fractal and complexity measures of heart rate variability.Clin Exp Hypertens. 2005 Feb-Apr;27(2-3):149-58. Clin Exp Hypertens. 2005. PMID: 15835377 Review.
-
Self-affine fractal variability of human heartbeat interval dynamics in health and disease.Eur J Appl Physiol. 2003 Oct;90(3-4):305-16. doi: 10.1007/s00421-003-0915-2. Epub 2003 Aug 27. Eur J Appl Physiol. 2003. PMID: 12942331 Review.
Cited by
-
SCD-HeFT: Use of R-R interval statistics for long-term risk stratification for arrhythmic sudden cardiac death.Heart Rhythm. 2015 Oct;12(10):2058-66. doi: 10.1016/j.hrthm.2015.06.030. Epub 2015 Jun 19. Heart Rhythm. 2015. PMID: 26096609 Free PMC article. Clinical Trial.
-
Validation of a non-linear index of heart rate variability to determine aerobic and anaerobic thresholds during incremental cycling exercise in women.Eur J Appl Physiol. 2023 Feb;123(2):299-309. doi: 10.1007/s00421-022-05050-x. Epub 2022 Oct 21. Eur J Appl Physiol. 2023. PMID: 36269394 Free PMC article.
-
Revealing alterations in heart rate fluctuations during the progression of Chagas disease.Front Med (Lausanne). 2024 Sep 10;11:1438077. doi: 10.3389/fmed.2024.1438077. eCollection 2024. Front Med (Lausanne). 2024. PMID: 39318596 Free PMC article.
-
Heart Rate Variability and Clinical Features as Predictors of Atrial Fibrillation Recurrence After Catheter Ablation: A Pilot Study.Front Physiol. 2021 May 25;12:672896. doi: 10.3389/fphys.2021.672896. eCollection 2021. Front Physiol. 2021. PMID: 34113264 Free PMC article.
-
Effects of fetal respiratory movements on the short-term fractal properties of heart rate variability.Med Biol Eng Comput. 2013 Apr;51(4):441-8. doi: 10.1007/s11517-012-1012-7. Epub 2012 Dec 16. Med Biol Eng Comput. 2013. PMID: 23242783
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous