Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec;24(12):1135-8.
doi: 10.1130/0091-7613(1996)024<1135:eipgpf>2.3.co;2.

Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota

Affiliations

Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota

H Ohmoto. Geology. 1996 Dec.

Abstract

The loss of Fe from some pre-2.2 Ga paleosols has been considered by previous investigators as the best evidence for a reduced atmosphere prior to 2.2 Ga. I have examined the behavior of Fe in both pre- and post-2.2 Ga paleosols from depth profiles of Fe3+/Ti, Fe2+/Ti, and sigma Fe/Ti ratios, and Fe3+/Ti vs. Fe2+/Ti plots. This new approach reveals a previously unrecognized history of paleosols. Essentially all paleosols, regardless of age, retain some characteristics of soils formed under an oxic atmosphere, such as increased Fe3+/Ti ratios from their parental rocks. The minimum oxygen pressure (PO2) for the 3.0-2.2 Ga atmosphere is calculated to be about 1.5% of the present atmospheric level, which is the same as that for the post-1.9 Ga atmosphere. The loss of sigma Fe, common in paleosol sections of all ages, was not due to a reducing atmosphere, but to reductive dissolution of ferric hydroxides formed under an oxic atmosphere. This reductive dissolution of ferric hydroxides occurred either (1) after soil formation by hydrothermal fluids or (2) during and/or after soil formation by organic acids generated from the decay of terrestrial organic matter. Terrestrial biomass on the early continents may have been more extensive than previously recognized.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources