Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986:17:69-84.
doi: 10.1007/BF01809814.

The adsorption and reaction of adenine nucleotides on montmorillonite

Collaborators, Affiliations

The adsorption and reaction of adenine nucleotides on montmorillonite

J P Ferris et al. Orig Life Evol Biosph. 1986.

Abstract

The binding of AMP to Zn(2+)-montmorillonite was investigated in the presence of buffers and salts. Good's buffers, piperazine-N,N'-bis(2-ethanesulfonate) [PIPES] and morpholine-N-2-ethanesulfonate [MES], perturbed the exchangeable cations to a lesser extent (only 9% of Zn2+ displaced by 0.2 M buffer) than was observed with imidazole and lutidine buffers or NaCl and KCl salts (up to 80% of Zn2+ displaced). AMP adsorption isotherms measured in the presence of 0.2 M PIPES, MES, or Na2SO4 exhibited normal Langmuir-type behavior. The adsorption coefficient, KL, is 3-fold greater in the presence of HEPES or PIPES than it is in the absence of buffers. Basal spacings measured by X-ray diffraction for Zn(2+)-montmorillonite are 13 and 15 angstroms in the presence of PIPES, while a value of 12.8 angstroms was determined in the absence of PIPES. These data are interpreted in a model in which the adsorption of AMP is mediated by a Zn2+ complex of PIPES in different orientations in the interlamellar region of the montmorillonite. The type of exchangeable cation does not affect the ability of the lattice-bound Fe3+ in the montmorillonite to oxidize diaminomaleonitrile (DAMN). Exchangeable Cu2+ oxidizes DAMN, but exchangeable Fe3+ is nearly ineffective as an oxidant. The addition of DISN to 3'-AMP bound to Zn(2+)-montmorillonite in the presence of 0.2 M PIPES resulted in a higher yield of 2',3'-cAMP than is observed with a comparable concentration of Zn2+, a result which inplicates surface catalysis by the montmorillonite.

PubMed Disclaimer

References

    1. Anal Biochem. 1980 Apr;103(2):214-21 - PubMed
    1. Orig Life. 1982 Mar;12(1):9-40 - PubMed
    1. J Mol Evol. 1980 Aug;15(4):317-31 - PubMed
    1. J Mol Evol. 1976 Dec 30;8(4):357-80 - PubMed
    1. J Mol Evol. 1980 Sep;16(1):11-21 - PubMed

Publication types

LinkOut - more resources