Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989:24:671-93.
doi: 10.1180/claymin.1989.024.4.09.

Luminescence and ESR studies of relationships between O(-)-centres and structural iron in natural and synthetically hydrated kaolinites

Collaborators, Affiliations

Luminescence and ESR studies of relationships between O(-)-centres and structural iron in natural and synthetically hydrated kaolinites

L M Coyne et al. Clay Miner. 1989.

Abstract

Luminescence, induced by dehydration and by wetting with hydrazine and unsymmetrically substituted hydrazine, and related ESR spectra have been observed from several kaolinites, synthetically hydrated kaolinites, and metahalloysites. The amine-wetting luminescence results suggest that intercalation, not a chemiluminescence reaction, is the luminescence trigger. Correlation between hydration-induced luminescence and g = 2 ESR signals associated with O(-)-centres in several natural halloysites, and concurrent diminution of the intensity of both these signal types as a function of aging in two 8.4 angstroms synthetically hydrated, kaolinites, confirm a previously-reported relationship between the luminescence induced by dehydration and in the presence of O(-)-centres (holes, i.e., electron vacancies) in the tetrahedral sheet. Furthermore, the ESR spectra of the 8.4 angstroms hydrate showed a concurrent change in the line shape of the g = 4 signal from a shape usually associated with structural Fe in an ordered kaolinite, to a simpler one typically observed in more disordered kaolinite, halloysite, and montmorillonite. Either structural Fe centres and the O(-)-centres interact, or both are subject to factors previously associated with degree of order. The results question the long-term stability of the 8.4 angstroms hydrate, although XRD does not indicate interlayer collapse over this period. Complex inter-relationships are shown between intercalation, stored energy, structural Fe, and the degree of hydration which may be reflected in catalytic as well as spectroscopic properties of the clays.

PubMed Disclaimer

Publication types

LinkOut - more resources