Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
- PMID: 11542234
- DOI: 10.1086/311843
Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
Abstract
The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.
Similar articles
-
Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications.Astrophys J Suppl Ser. 1989 Dec;71:733-75. doi: 10.1086/191396. Astrophys J Suppl Ser. 1989. PMID: 11542189 Review.
-
Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal.Astrophys J. 1996 Feb 20;458(2 Pt 1):621-36. doi: 10.1086/176844. Astrophys J. 1996. PMID: 11538558
-
The spacing of the interstellar 6.2 and 7.7 micron emission features as an indicator of polycyclic aromatic hydrocarbon size.Astrophys J. 1999 Mar 1;513(1 Pt 2):L69-73. doi: 10.1086/311901. Astrophys J. 1999. PMID: 11543062
-
Simulated infrared emission spectra of highly excited polyatomic molecules: a detailed model of the PAH-UIR hypothesis.Astrophys J. 1998 Feb 1;493 Pt 1(2):793-802. doi: 10.1086/305156. Astrophys J. 1998. PMID: 11541733
-
Circumstellar chemistry from microwave and mm-wave spectroscopy.Adv Space Res. 1995 Mar;15(3):3-14. doi: 10.1016/s0273-1177(99)80058-1. Adv Space Res. 1995. PMID: 11539242 Review.
Cited by
-
Cosmic carbon chemistry: from the interstellar medium to the early Earth.Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a002097. doi: 10.1101/cshperspect.a002097. Epub 2010 Jun 16. Cold Spring Harb Perspect Biol. 2010. PMID: 20554702 Free PMC article. Review.
-
Nucleophilic addition of nitrogen to aryl cations: mimicking Titan chemistry.J Am Soc Mass Spectrom. 2013 Nov;24(11):1745-54. doi: 10.1007/s13361-013-0710-1. Epub 2013 Aug 28. J Am Soc Mass Spectrom. 2013. PMID: 23982933
-
Charge State Influence on Stability and Isomerism in Dehydrogenated PAHs: Insights from Anthracene, Acridine, and Phenazine.Chemphyschem. 2025 Mar 15;26(6):e202400729. doi: 10.1002/cphc.202400729. Epub 2024 Dec 29. Chemphyschem. 2025. PMID: 39661374 Free PMC article.
-
Laboratory IR Spectra of the Ionic Oxidized Fullerenes C60O+ and C60OH.J Phys Chem A. 2022 May 19;126(19):2928-2935. doi: 10.1021/acs.jpca.2c01329. Epub 2022 May 9. J Phys Chem A. 2022. PMID: 35533303 Free PMC article.
-
The mystery of unidentified infrared emission bands.Astrophys Space Sci. 2022;367(2):16. doi: 10.1007/s10509-022-04045-6. Epub 2022 Feb 2. Astrophys Space Sci. 2022. PMID: 35210653 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources