Nonreplicating persistence of mycobacterium tuberculosis
- PMID: 11544352
- DOI: 10.1146/annurev.micro.55.1.139
Nonreplicating persistence of mycobacterium tuberculosis
Abstract
There is ample clinical evidence, as well as evidence from animal experiments, that Mycobacterium tuberculosis can persist in tissues for months to decades without replicating, yet with the ability to resume growth and activate disease. Our knowledge of both macrophage physiology and the nature of tuberculous lesions in man and animals suggests that hypoxia is a major factor in inducing nonreplicating persistence (NRP) of tubercle bacilli. In vitro models reinforce this conclusion and provide insights into mechanisms that make NRP possible. There is evidence from in vitro models that the strategies employed by the bacilli to permit hypoxic NRP include restriction of biosynthetic activity to conserve energy, induction of alternative energy pathways, and stabilization of essential cell components to lessen the need for repair or replacement.
Similar articles
-
An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence.Infect Immun. 1996 Jun;64(6):2062-9. doi: 10.1128/iai.64.6.2062-2069.1996. Infect Immun. 1996. PMID: 8675308 Free PMC article.
-
A Physiologically Relevant In Vitro Model of Nonreplicating Persistent Mycobacterium tuberculosis in Caseum.Curr Protoc. 2025 Mar;5(3):e70118. doi: 10.1002/cpz1.70118. Curr Protoc. 2025. PMID: 40056090 Free PMC article.
-
Hypoxia triggers the expression of human β defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages.J Immunol. 2012 Apr 15;188(8):4001-7. doi: 10.4049/jimmunol.1100976. Epub 2012 Mar 16. J Immunol. 2012. PMID: 22427634
-
On the nature of Mycobacterium tuberculosis-latent bacilli.Eur Respir J. 2004 Dec;24(6):1044-51. doi: 10.1183/09031936.04.00072604. Eur Respir J. 2004. PMID: 15572551 Review.
-
Who puts the tubercle in tuberculosis?Nat Rev Microbiol. 2007 Jan;5(1):39-47. doi: 10.1038/nrmicro1538. Epub 2006 Dec 11. Nat Rev Microbiol. 2007. PMID: 17160001 Review.
Cited by
-
IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection.J Immunol. 2013 Mar 15;190(6):2778-90. doi: 10.4049/jimmunol.1202722. Epub 2013 Feb 8. J Immunol. 2013. PMID: 23396944 Free PMC article.
-
Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.Nucleic Acids Res. 2015 Mar 11;43(5):e32. doi: 10.1093/nar/gku1317. Epub 2014 Dec 24. Nucleic Acids Res. 2015. PMID: 25539917 Free PMC article.
-
4'-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo.PLoS Pathog. 2012 Dec;8(12):e1003097. doi: 10.1371/journal.ppat.1003097. Epub 2012 Dec 20. PLoS Pathog. 2012. PMID: 23308068 Free PMC article.
-
Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target.J Bacteriol. 2012 Feb;194(3):663-8. doi: 10.1128/JB.06142-11. Epub 2011 Nov 28. J Bacteriol. 2012. PMID: 22123255 Free PMC article.
-
Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers.Appl Environ Microbiol. 2012 May;78(9):3221-8. doi: 10.1128/AEM.07307-11. Epub 2012 Feb 24. Appl Environ Microbiol. 2012. PMID: 22367083 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous