Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001:55:561-90.
doi: 10.1146/annurev.micro.55.1.561.

Recombination and the population structures of bacterial pathogens

Affiliations
Review

Recombination and the population structures of bacterial pathogens

E J Feil et al. Annu Rev Microbiol. 2001.

Abstract

The population structures of bacterial species are complex and often controversial. To a large extent, this is due to uncertainty about the frequency and impact of recombination in bacteria. The existence of clones within bacterial populations, and of linkage disequilibrium between alleles at different loci, is often cited as evidence for low rates of recombination. However, clones and linkage disequilibrium are almost inevitable in species that divide by binary fission and can be present in populations where recombination is frequent. In recent years, it has become possible to directly compare rates of recombination in different species. These studies indicate that in many bacterial species, including Neisseria meningitidis, Streptococcus pneumoniae, and Staphylococcus aureus, evolutionary change at neutral (housekeeping) loci is more likely to occur by recombination than mutation and can result in the elimination of any deep-rooted phylogenetic signal. In such species, the long-term evolution of the population is dominated by recombination, but this does not occur at a sufficiently high frequency to prevent the emergence of adaptive clones, although these are relatively short-lived and rapidly diversify.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources