Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep 7;312(1):7-16.
doi: 10.1006/jmbi.2001.4950.

Transfer of the Salmonella type III effector sopE between unrelated phage families

Affiliations

Transfer of the Salmonella type III effector sopE between unrelated phage families

S Mirold et al. J Mol Biol. .

Abstract

Salmonella spp. are pathogenic enterobacteria that employ type III secretion systems to translocate effector proteins and modulate responses of host cells. The repertoire of translocated effector proteins is thought to define host specificity and epidemic virulence, and varies even between closely related Salmonella strains. Therefore, horizontal transfer of effector protein genes between Salmonella strains plays a key role in shaping the Salmonella-host interaction. Several effector protein genes are located in temperate phages. The P2-like phage SopE Phi encodes SopE and the lambda-like GIFSY phages encode several effector proteins of the YopM/IpaH-family. Lysogenic conversion with these phages is responsible for much of the diversity of the effector protein repertoires observed among Salmonella spp. However, free exchange of effector proteins by lysogenic conversion can be restricted by superinfection immunity. To identify genetic mechanisms that may further enhance horizontal transfer of effector genes, we have analyzed sopE loci from Salmonella spp. that do not harbor P2-like sequences of SopE Phi. In two novel sopE loci that were identified, the 723 nt sopE gene is located in a conserved 1.2 kb cassette present also in SopE Phi. Most strikingly, in Salmonella enterica subspecies I serovars Gallinarum, Enteritidis, Hadar and Dublin, the sopE-cassette is located in a cryptic lambda-like prophage with similarity to the GIFSY phages. This provides the first evidence for transfer of virulence genes between different phage families. We show that such a mechanism can circumvent restrictions to phage-mediated gene transfer and thereby enhances reassortment of the effector protein repertoires in Salmonella spp.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources