Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Sep 7;312(1):59-68.
doi: 10.1006/jmbi.2001.4822.

Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca(2+)/calmodulin-dependent kinase kinase peptide

Affiliations
Comparative Study

Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca(2+)/calmodulin-dependent kinase kinase peptide

H Kurokawa et al. J Mol Biol. .

Erratum in

  • J Mol Biol. 2005 Dec 9;354(4):1008

Abstract

Calmodulin (CaM) is a ubiquitous calcium (Ca(2+)) sensor which binds and regulates protein serine/threonine kinases along with many other proteins in a Ca(2+)-dependent manner. For this multi-functionality, conformational plasticity is essential; however, the nature and magnitude of CaM's plasticity still remains largely undetermined. Here, we present the 1.8 A resolution crystal structure of Ca(2+)/CaM, complexed with the 27-residue synthetic peptide corresponding to the CaM-binding domain of the nematode Caenorhabditis elegans Ca(2+)/CaM-dependent kinase kinase (CaMKK). The peptide bound in this crystal structure is a homologue of the previously NMR-derived complex with rat CaMKK, but benefits from improved structural resolution. Careful comparison of the present structure to previous crystal structures of CaM complexed with unrelated peptides derived from myosin light chain kinase and CaM kinase II, allow a quantitative analysis of the differences in the relative orientation of the N and C-terminal domains of CaM, defined as a screw axis rotation angle ranging from 156 degrees to 196 degrees. The principal differences in CaM interaction with various peptides are associated with the N-terminal domain of CaM. Unlike the C-terminal domain, which remains unchanged internally, the N-terminal domain of CaM displays significant differences in the EF-hand helix orientation between this and other CaM structures. Three hydrogen bonds between CaM and the peptide (E87-R336, E87-T339 and K75-T339) along with two salt bridges (E11-R349 and E114-K334) are the most probable determinants for the binding direction of the CaMKK peptide to CaM.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources