Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;47(7):680-4.

Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm

Affiliations
  • PMID: 11547890

Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm

B D Corbin et al. Can J Microbiol. 2001 Jul.

Abstract

An Escherichia coli K-12 biofilm was grown at a dilution rate of 0.028 h(-1) for 48 h in a glucose-limited chemostat coupled to a modified Robbins' device to determine its susceptibility to infection by bacteriophage T4. Bacteriophage T4 at a multiplicity of infection (MOI) of 10 caused a log reduction in biofilm density (expressed as colony forming units (CFU) per cm2) at 90 min postinfection. After 6 h, a net decrease and equilibrium in viral titer was seen. When biofilms were exposed to T4 phage at a MOI of 100, viral titer doubled after 90 min. After 6 h, viral titers (expressed as plaque forming units (PFU) per cm2) stabilized at levels approximately one order of magnitude higher than seen at a MOI of 10. Scanning confocal laser microscopy images also indicated disruption of biofilm morphology following T4 infection with the effects being more pronounced at a MOI of 100 than at a MOI of 10. These results imply that biofilms under carbon limitation can act as natural reservoirs for bacteriophage and that bacteriophage can have some influence on biofilm morphology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources