Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;8(4):425-33.
doi: 10.1038/sj.cdd.4400834.

Caspase-3 cleaves Apaf-1 into an approximately 30 kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex

Affiliations

Caspase-3 cleaves Apaf-1 into an approximately 30 kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4 MDa apoptosome complex

S B Bratton et al. Cell Death Differ. 2001 Apr.

Abstract

Cytochrome c and dATP/ATP induce oligomerization of Apaf-1 into two distinct apoptosome complexes: an approximately 700 kDa complex, which recruits and activates caspases-9, -3 and -7, and an approximately 1.4 MDa complex, which recruits and processes caspase-9, but does not efficiently activate effector caspases. While searching for potential inhibitors of the approximately 1.4 MDa apoptosome complex, we observed an approximately 30 kDa Apaf-1 immunoreactive fragment that was associated exclusively with the inactive complex. We subsequently determined that caspase-3 cleaved Apaf-1 within its CED-4 domain (SVTD(271) downward arrowS) in both dATP-activated lysates and apoptotic cells to form a prominent approximately 30 kDa (p30) N-terminal fragment. Purified recombinant Apaf-1 p30 fragment weakly inhibited dATP-dependent activation of caspase-3 in vitro. However, more importantly, prevention of endogenous formation of the p30 fragment did not stimulate latent effector caspase processing activity in the large complex. Similarly, the possibility that XIAP, an inhibitor of apoptosis protein (IAP), was responsible for the inactivity of the approximately 1.4 MDa complex was excluded as immunodepletion of this caspase inhibitor failed to relieve the inhibition. However, selective proteolytic digestion of the approximately 1.4 MDa and approximately 700 kDa complexes showed that Apaf-1 was present in conformationally distinct forms in these two complexes. Therefore, the inability of the approximately 1.4 MDa apoptosome complex to process effector caspases most likely results from inappropriately folded or oligomerized Apaf-1.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources