Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;46(3):548-54.
doi: 10.1002/mrm.1226.

Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE)

Affiliations
Free article

Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE)

R Bammer et al. Magn Reson Med. 2001 Sep.
Free article

Abstract

Diffusion-weighted single-shot EPI (sshEPI) is one of the most important tools for the diagnostic assessment of stroke patients, but it suffers from well known artifacts. Therefore, sshEPI was combined with SENSitivity Encoding (SENSE) to further increase EPI's potential for stroke imaging. Eight healthy volunteers and a consecutive series of patients (N = 8) with suspected stroke were examined with diffusion-weighted SENSE-sshEPI using different reduction factors (1.0 < or = R < or = 3.0). Additionally, a high-resolution diffusion-weighted SENSE-sshEPI scan was included. All examinations were diagnostic and of better quality than conventional sshEPI. No ghostings or aliasing artifacts were discernible, and EPI-related image distortions were markedly diminished. Chemical shift artifacts and eddy current-induced image warping were still present, although to a markedly smaller extent. Measured direction-dependent diffusion-coefficients and isotropic diffusion values were comparable to previous findings but showed less fluctuation. We have demonstrated the technical feasibility and clinical applicability of diffusion-weighted SENSE-sshEPI in patients with subacute stroke. Because of the faster k-space traversal, this novel technique is able to reduce typical EPI artifacts and increase spatial resolution while simultaneously remaining insensitive to bulk motion.

PubMed Disclaimer

Publication types

LinkOut - more resources