Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 15;57(4):550-8.
doi: 10.1002/1097-4636(20011215)57:4<550::aid-jbm1201>3.0.co;2-t.

C1q-independent activation of neutrophils by immunoglobulin M-coated surfaces

Affiliations

C1q-independent activation of neutrophils by immunoglobulin M-coated surfaces

J Wetterö et al. J Biomed Mater Res. .

Abstract

Neutrophil granulocytes are known to rapidly adhere and undergo frustrated phagocytosis upon contact with immunoglobulin and/or complement protein opsonized artificial surfaces. In this study, we examined the relation between serum protein deposition and human neutrophil activation on hydrophobic glass and silicon model surfaces that were coated with immunoglobulin G or M (IgG/IgM), both initiators of the classical complement pathway. Protein adsorption from normal human serum (NHS) was quantified with null-ellipsometry combined with antibody techniques. The neutrophil oxygen radical production was registered by luminol-amplified chemiluminescence (CL) and the morphology, as well as changes in the content of filamentous actin (F-actin), were documented by fluorescence microscopy. Complement factor 3 (C3) bound to both IgG- and IgM-coated surfaces, but surprisingly C1q was found only on IgG-coated surfaces. Both immunoglobulins triggered complement dependent neutrophil activation. However, CL and F-actin accumulation were found sensitive to the presence of C1q in the serum only at the IgG-coated surface. We suggest that spontaneously adsorbed IgM activates the complement system and interacts with neutrophils by C1q-independent mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources