Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep 21;287(2):422-6.
doi: 10.1006/bbrc.2001.5622.

Induction of SPARC by VEGF in human vascular endothelial cells

Affiliations

Induction of SPARC by VEGF in human vascular endothelial cells

Y Kato et al. Biochem Biophys Res Commun. .

Abstract

SPARC/osteonectin/BM-40 is a matricellular protein that is thought to be involved in angiogenesis and endothelial barrier function. Previously, we have detected high levels of SPARC expression in endothelial cells (ECs) adjacent to carcinomas of kidney and tongue. Although SPARC-derived peptide showed an angiogenic effect, intact SPARC itself inhibited the mitogenic activity of vascular endothelial growth factor (VEGF) for ECs by the inhibiting phosphorylation of flt-1 (VEGF receptor 1) and subsequent ERK activation. Thus, the role of SPARC in tumor angiogenesis, stimulation or inhibition, is still unclear. To clarify the role of SPARC in tumor growth and progression, we determined the effect of VEGF on the expression of SPARC in human microvascular EC line, HMEC-1, and human umbilical vein ECs. VEGF increased the levels of SPARC protein and steady-state levels of SPARC mRNA in serum-starved HMEC-1 cells. Inhibitors (SB202190 and SB203580) of p38, a mitogen-activated protein (MAP) kinase, attenuated VEGF-stimulated SPARC production in ECs. Since intact SPARC inhibits phosphorylation ERK MAP kinase in VEGF signaling, it was suggested that SPARC plays a dual role in the VEGF functions, tumor angiogenesis, and extravasation of tumors mediated by the increased permeability of endothelial barrier function.

PubMed Disclaimer

Publication types

MeSH terms