Human herpesvirus latency
- PMID: 11556692
- PMCID: PMC8098588
- DOI: 10.1111/j.1750-3639.2001.tb00415.x
Human herpesvirus latency
Abstract
Herpesviruses are among the most successful human pathogens. In healthy individuals, primary infection is most often inapparent. After primary infection, the virus becomes latent in ganglia or blood mononuclear cells. Three major subfamilies of herpesviruses have been identified based on similar growth characteristics, genomic structure, and tissue predilection. Each herpesvirus has evolved its own unique ecological niche within the host that allows the maintenance of latency over the life of the individual (e.g. the adaptation to specific cell types in establishing latent infection and the mechanisms, including expression of different sets of genes, by which the virus remains latent). Neurotropic alphaherpesviruses become latent in dorsal root ganglia and reactivate to produce epidermal ulceration, either localized (herpes simplex types 1 and 2) or spread over several dermatomes (varicalla-zoster virus). Human cytomegalovirus, the prototype betaherpesvirus, establishes latency in bone marrow-derived myeloid progenitor cells. Reactivation of latent virus is especially serious in transplant recipients and AIDS patients. Lymphotropic gammaherpesviruses (Epstein-Barr virus) reside latent in resting B cells and reactivate to produce various neurologic complications. This review highlights the alphaherpesvirus, specifically herpes simplex virus type 1 and varicella-zoster virus, and describes the characteristics of latent infection.
Similar articles
-
Recent Advances in the Study of Alphaherpesvirus Latency and Reactivation: Novel Guidance for the Design of Herpesvirus Live Vector Vaccines.Pathogens. 2024 Sep 10;13(9):779. doi: 10.3390/pathogens13090779. Pathogens. 2024. PMID: 39338969 Free PMC article. Review.
-
Simian varicella virus gene expression during acute and latent infection of rhesus macaques.J Neurovirol. 2011 Dec;17(6):600-12. doi: 10.1007/s13365-011-0057-y. Epub 2011 Nov 4. J Neurovirol. 2011. PMID: 22052378 Free PMC article.
-
A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.J Gen Virol. 2015 Jul;96(Pt 7):1581-602. doi: 10.1099/vir.0.000128. Epub 2015 Mar 20. J Gen Virol. 2015. PMID: 25794504 Free PMC article. Review.
-
CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections.PLoS Pathog. 2016 Jun 30;12(6):e1005701. doi: 10.1371/journal.ppat.1005701. eCollection 2016 Jun. PLoS Pathog. 2016. PMID: 27362483 Free PMC article.
-
[Prevention and therapy of herpesvirus infections].Zentralbl Bakteriol Mikrobiol Hyg B. 1985 Feb;180(2-3):107-20. Zentralbl Bakteriol Mikrobiol Hyg B. 1985. PMID: 2986378 Review. German.
Cited by
-
Herpesviral Fcgamma receptors: culprits attenuating antiviral IgG?Int Immunopharmacol. 2004 Sep;4(9):1135-48. doi: 10.1016/j.intimp.2004.05.020. Int Immunopharmacol. 2004. PMID: 15251110 Free PMC article.
-
"Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence.PLoS Biol. 2020 Apr 28;18(4):e3000673. doi: 10.1371/journal.pbio.3000673. eCollection 2020 Apr. PLoS Biol. 2020. PMID: 32343693 Free PMC article.
-
Latent versus productive infection: the alpha herpesvirus switch.Future Virol. 2018 May;13(6):431-443. doi: 10.2217/fvl-2018-0023. Epub 2018 May 22. Future Virol. 2018. PMID: 29967651 Free PMC article. Review.
-
Serious neurological adverse events in immunocompetent children and adolescents caused by viral reactivation in the years following varicella vaccination.Rev Med Virol. 2024 May;34(3):e2538. doi: 10.1002/rmv.2538. Rev Med Virol. 2024. PMID: 38658176 Free PMC article.
-
Characterization of an antisense transcript spanning the UL81-82 locus of human cytomegalovirus.J Virol. 2005 Sep;79(17):11022-34. doi: 10.1128/JVI.79.17.11022-11034.2005. J Virol. 2005. PMID: 16103153 Free PMC article.
References
-
- Annunziato P, LaRussa P, Lee P, Steinberg S, Lungu O, Gershon AA, Silverstein S (1998) Evidence of latent varicella‐zoster virus in rat dorsal root ganglia. J Infect Dis 178 (Suppl 1): S48–S51. - PubMed
-
- Baringer JR (1974) Recovery of herpes simplex virus from human sacral ganglions. N Eng J Med 291: 828–830. - PubMed
-
- Bennett JL, Mahalingam R, Wellish MC, Gilden DH (1996) Epstein‐Barr virus—associated acute autonomic neuropathy. Ann Neurol 40: 453–455. - PubMed
-
- Block TM, Hill JM (1997) The latency associated transcripts (LAT) of herpes simplex virus: still no end in sight. J Neurovirol 3: 313–321. - PubMed
-
- Bratanich AC, Hanson ND, Jones CJ (1992) The latency‐related gene of bovine herpesvirus 1 inhibits the activity of immediate‐early transcription unit 1. Virology 191: 988–991. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources