Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep 15;393(2):199-206.
doi: 10.1006/abbi.2001.2487.

Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase

Affiliations

Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase

P Grellier et al. Arch Biochem Biophys. .

Abstract

Prooxidant nitroaromatic and quinoidal compounds possess antimalarial activity, which might be attributed either to their formation of reactive oxygen species or to their inhibition of antioxidant enzyme glutathione reductase (GR, EC 1.6.4.2). We have examined the activity in vitro against Plasmodium falciparum of 24 prooxidant compounds of different structure (nitrobenzenes, nitrofurans, quinones, 1,1'-dibenzyl-4,4'-bipyridinium, and methylene blue), which possess a broad range of single-electron reduction potentials (E(1)(7)) and erythrocyte glutathione reductase inhibition constants (K(i(GR))). For a series of homologous derivatives of 2-(5'-nitrofurylvinyl)quinoline-4-carbonic acid, the relationship between compound K(i(GR)) and concentration causing 50% parasite growth inhibition (IC(50)) was absent. For all the compounds examined in this study, the dependence of IC(50) on their K(i(GR)) was insignificant. In contrast, IC(50) decreased with an increase in E(1)(7) and positive electrostatic charge of aromatic part of molecule (Z): log IC(50) (microM) = -(0.9846 +/- 0.3525) - (7.2850 +/- 1.2340) E(1)(7) (V) - (1.1034 +/- 0.1832) Z (r(2) = 0.8015). The redox cycling activity of nitroaromatic and quinoidal compounds in ferredoxin:NADP(+) reductase-catalyzed reaction and the rate of oxyhemoglobin oxidation in lysed erythrocytes increased with an increase in their E(1)(7) value. Our findings imply that the antiplasmodial activity of nitroaromatic and quinoidal compounds is mainly influenced by their ability to form reactive oxygen species, and much less significantly by the GR inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources