Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;52(1):51-64.
doi: 10.1016/s0008-6363(01)00370-4.

Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells

Affiliations

Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells

M E Mangoni et al. Cardiovasc Res. 2001 Oct.

Abstract

Objective: We have investigated the properties of the hyperpolarization-activated (I(f)) current in pacemaker cells from the mouse sino-atrial node (SAN).

Methods: The I(f) current was studied in cells isolated enzymatically from the SAN region of adult C57BL6/J mice. The whole-cell variation of the patch-clamp technique was employed to investigate the basic properties of I(f).

Results: In mouse SAN cells, the I(f) current density at -120 mV was 18+/-2 pA/pF (n=23). I(f) was not detected in cells showing atrial-like morphology that were also found in SAN preparations (n=7). I(f) was blocked by 5 mM Cs(+), was inhibited by application of 5 microM acetylcholine, and was increased by 10 microM noradrenaline. The I(f) current reversal potential was -31+/-2 mV under physiological concentration of Na(+) and K(+) ions. Lowering the extracellular Na(+) concentration reduced I(f) amplitude, while increased when the extracellular K(+) concentration was augmented. I(f) voltage for half activation was -87+/-1 mV (n=6).

Conclusions: We conclude that the native I(f) current in mouse SAN cells shows functional properties that are similar to I(f) described in rabbit SAN tissue. This study opens the possibility of investigating the involvement of I(f) in the regulation of heart rate in genetically modified mice.

PubMed Disclaimer

Comment in

LinkOut - more resources