Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;281(4):L868-78.
doi: 10.1152/ajplung.2001.281.4.L868.

Synergistic neutrophil elastase-cytokine interaction degrades collagen in three-dimensional culture

Affiliations
Free article

Synergistic neutrophil elastase-cytokine interaction degrades collagen in three-dimensional culture

Y K Zhu et al. Am J Physiol Lung Cell Mol Physiol. 2001 Oct.
Free article

Abstract

Proteolytic degradation of extracellular matrix is thought to play an important role in many lung disorders. In the current study, human lung fibroblasts were cast into type I collagen gels and floated in medium containing elastase, cytomix (combination of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma), or both. After 5 days, gel collagen content was determined by measuring hydroxyproline. Elastase alone did not result in collagen degradation, but in the presence of fibroblasts, elastase reduced hydroxyproline content to 75.2% (P < 0.01), whereas cytomix alone resulted in reduction of hydroxyproline content to 93% (P < 0.05). The combination of elastase and cytomix reduced hydroxyproline content to 5.2% (P < 0.01). alpha(1)-Proteinase inhibitor blocked this synergy. Gelatin zymography and Western blot revealed that matrix metalloproteinase (MMP)-1, -3, and -9 were induced by cytomix and activated in the presence of elastase. Tissue inhibitor of metalloproteinase (TIMP)-1 and -2 were also induced by cytomix but were cleaved by elastase. We conclude that a synergistic interaction between cytomix and elastase, mediated through cytokine induction of MMP production and elastase-induced activation of latent MMPs and degradation of TIMPs, can result in a dramatic augmentation of collagen degradation. These findings support the notion that interaction among inflammatory mediators secreted by mononuclear cells and neutrophils can induce tissue cells to degrade extracellular matrix. Such a mechanism may contribute to the protease-anti-protease imbalance in emphysema.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources