The physiological and pathophysiological modulation of the endocrine function of the heart
- PMID: 11558679
The physiological and pathophysiological modulation of the endocrine function of the heart
Abstract
Under physiological conditions, the endocrine heart contributes to the maintenance of cardiovascular homeostasis through the polypeptide hormones ANF and BNP, which are members of the natriuretic peptide (NP) family. Given that NPs are of interest from the basic and clinical points of view, the genetic expression and secretion of ANF and BNP as well as the nature of the interaction of these hormones with their receptors has been the subject of extensive studies since the discovery of ANF in 1980. Following hemodynamic overload, increased secretion of NPs by the heart can be seen. This change may occur without an increase in gene expression as observed for atrial NPs following acute volume expansion, or it can occur with an increase in both ANF and BNP gene expression in atria only as seen in mineralocorticoid escape during which it is obvious that a critical decrease in hormone stores must be reached before transcriptional activation occurs. Chronic hemodynamic pressure or volume overload results in increased expression of NPs in atria and ventricles. Under these circumstances, the increased production of BNP by hypertrophic ventricles changes the normal plasma concentration ratio of ANF to BNP, a fact that has clinical diagnostic and prognostic implications. There are exceptions to this rule: chronic, severe L-NAME hypertension, which may occur without left ventricular hypertrophy, does not cause this effect and increased ventricular NP gene expression can occur in mineralocorticoid hypertension before detectable ventricular hypertrophy. Atrial and ventricular NP gene expression appears to be under different transcriptional control because pharmacological treatments such as chronic ACE inhibition or ET(A) receptor blockade can reverse the increased ventricular NP expression but has no detectable effect on atrial NP gene expression. This is not unlike the myosin heavy chain switch that is observed in certain pathologies, and can be pharmacologically reversed in a manner similar to NPs in the ventricles but it does not occur in atrial muscle. These observations made in vivo or using isolated adult atria often differ strikingly from results obtained using the mixed phenotype afforded by cardiocytes in culture, indicating that the kinds of questions addressed by each approach must be judiciously chosen. G-protein coupled receptor-mediated actions of neurohumors such as endothelin and phenylephrine are normally used to stimulate NP gene expression and release in different in vitro models. The main physiological stimulus for increased ANF release, atrial muscle stretch, also appears to rely on G-protein-coupled mechanisms. Alternative agonists and receptor types at play are suggested by the finding that circulating levels of BNP are selectively increased before and during overt cardiac allograft rejection episodes in human patients. The data suggest that enhanced BNP plasma levels could form a basis for a noninvasive test for cardiac allograft rejection. However, the molecular mechanism by which expression of NPs are regulated in the transplanted heart is not well understood. Conditioned medium from mixed lymphocyte reaction cultures, considered an in vitro model of transplantation immunity, induces specific upregulation of BNP as do individual pro-inflammatory cytokines. Findings such as these suggest that the study of NPs will continue to produce a wealth of information relevant to basic and clinical scientists.
Similar articles
-
Mechanical and neuroendocrine regulation of the endocrine heart.Cardiovasc Res. 1996 Jan;31(1):7-18. Cardiovasc Res. 1996. PMID: 8849584 Review.
-
Relationship between natriuretic peptides and inflammation: proteomic evidence obtained during acute cellular cardiac allograft rejection in humans.J Heart Lung Transplant. 2008 Jan;27(1):31-7. doi: 10.1016/j.healun.2007.09.025. J Heart Lung Transplant. 2008. PMID: 18187084
-
Cardiac hormones ANF and BNP modulate proliferation in the unidirectional mixed lymphocyte reaction.J Heart Lung Transplant. 2010 Mar;29(3):323-6. doi: 10.1016/j.healun.2009.07.008. Epub 2009 Sep 26. J Heart Lung Transplant. 2010. PMID: 19783165
-
Thirty years of research on atrial natriuretic factor: historical background and emerging concepts.Can J Physiol Pharmacol. 2011 Aug;89(8):527-31. doi: 10.1139/y11-019. Epub 2011 Aug 4. Can J Physiol Pharmacol. 2011. PMID: 21671768 Review.
-
Atrial natriuretic factor and brain natriuretic peptide gene expression in the spontaneous hypertensive rat during postnatal development.Am J Hypertens. 1998 Aug;11(8 Pt 1):1006-18. doi: 10.1016/s0895-7061(98)00116-2. Am J Hypertens. 1998. PMID: 9715795
Cited by
-
Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy.Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):564-9. doi: 10.1073/pnas.0811022106. Epub 2009 Jan 6. Proc Natl Acad Sci U S A. 2009. PMID: 19126686 Free PMC article.
-
Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis.Front Physiol. 2021 Aug 19;12:693099. doi: 10.3389/fphys.2021.693099. eCollection 2021. Front Physiol. 2021. PMID: 34489721 Free PMC article. Review.
-
Systemic, but not cardiomyocyte-specific, deletion of the natriuretic peptide receptor guanylyl cyclase A increases cardiomyocyte number in neonatal mice.Histochem Cell Biol. 2015 Oct;144(4):365-75. doi: 10.1007/s00418-015-1337-z. Epub 2015 Jun 10. Histochem Cell Biol. 2015. PMID: 26059418
-
Endothelial actions of atrial and B-type natriuretic peptides.Br J Pharmacol. 2012 May;166(2):522-31. doi: 10.1111/j.1476-5381.2012.01827.x. Br J Pharmacol. 2012. PMID: 22220582 Free PMC article. Review.
-
Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction.Int J Mol Sci. 2019 Aug 14;20(16):3946. doi: 10.3390/ijms20163946. Int J Mol Sci. 2019. PMID: 31416126 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous