Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;50(3):389-400.
doi: 10.1002/ana.1123.

Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions

Affiliations

Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions

J W Peterson et al. Ann Neurol. 2001 Sep.

Abstract

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that causes motor, sensory, and cognitive deficits. The present study characterized demyelinated lesions in the cerebral cortex of MS patients. One hundred twelve cortical lesions were identified in 110 tissue blocks from 50 MS patients. Three patterns of cortical demyelination were identified: Type I lesions were contiguous with subcortical white matter lesions; Type II lesions were small, confined to the cortex, and often perivascular; Type III lesions extended from the pial surface to cortical layer 3 or 4. Inflammation and neuronal pathology were studied in tissue from 8 and 7 patients, respectively. Compared to white matter lesions, cortical lesions contained 13 times fewer CD3-positive lymphocytes (195 vs 2,596/mm3 of tissue) and 6 times fewer CD68-positive microglia/macrophages (11,948 vs 67,956/mm3 of tissue). Transected neurites (both axons and dendrites) occurred at a density of 4,119/mm3 in active cortical lesions, 1,107/mm3 in chronic active cortical lesions, 25/mm3 in chronic inactive cortical lesions, 8/mm3 in myelinated MS cortex, and 1/mm3 in control cortex. In active and chronic active cortical lesions, activated microglia closely apposed and ensheathed apical dendrites, neurites, and neuronal perikarya. In addition, apoptotic neurons were increased significantly in demyelinated cortex compared to myelinated cortex. These data support the hypothesis that demyelination, axonal transection, dendritic transection, and apoptotic loss of neurons in the cerebral cortex contribute to neurological dysfunction in MS patients.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources