Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Sep;25(1):54-61.
doi: 10.1006/meth.2001.1215.

Use of homogeneous time-resolved fluorescence energy transfer in the measurement of nuclear receptor activation

Affiliations
Review

Use of homogeneous time-resolved fluorescence energy transfer in the measurement of nuclear receptor activation

G Zhou et al. Methods. 2001 Sep.

Abstract

Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that mediate the effects of hormones and other endogenous ligands to regulate the expression of specific genes. NRs are clearly important targets for drug discovery. Ligand-dependent protein-protein interactions between NRs and NR coactivators (NRCoAs) are a critical step in regulation of transcription. Homogeneous time-resolved fluorescence (HTRF) energy transfer technology is sensitive, homogeneous, and nonradioactive. These characteristics make this approach attractive for developing high-throughput screening assays. The long-lived nature of the fluorescence of europium cryptate combined with a time delay in reading facilitates the homogeneous nature of the assay. Importantly, the introduction of lanthanides (with R0 values as great as 90 A in HTRF) make HTRF amenable to be used for protein-protein interactions. In this article we review, using peroxisome proliferator-activated receptor (PPAR)gamma as a model system, a novel approach for characterizing the ligand-dependent interaction between NR and NRCoA using HTRF technology and its potential uses in small-molecule screening, profiling selectivity of NR-NRCoA paired interactions, and profiling NR ligands as agonists versus partial agonists or antagonists.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources