Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;49(9):4183-7.
doi: 10.1021/jf010572i.

Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography

Affiliations

Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography

N A Nyman et al. J Agric Food Chem. 2001 Sep.

Abstract

A high-performance liquid chromatographic (HPLC) method for the determination of anthocyanidins from berries and red wine is described. Delphinidin, cyanidin, petunidin, pelargonidin, peonidin, and malvidin contents of bilberry (Vaccinium myrtillus), black currant (Ribes nigrum), strawberry (Fragaria ananassa cv. Jonsok), and a Cabernet sauvignon (Vitis vinifera) red wine were determined. The aglycon forms of the anthocyanins present in the samples were revealed by acid hydrolysis. A reversed phase analytical column was employed to separate the anthocyanidins before identification by diode array detection. The suitability of the method was tested by determining the recovery (95-102% as aglycons and 69-104% from glycosides) for each anthocyanidin. Method repeatability was tested by charting the total aglycon content of two samples over a period of 14 analyses and determining the coefficients of variation (1.41% for bilberry and 2.56% for in-house reference material). The method developed proved thus to be effective for reliable determination of anthocyanidins from freeze-dried berry samples and red wine. The total anthocyanidin content of the tested samples was as follows: in-house reference material, 447 +/- 8 mg/100 g; strawberry, 23.8 +/- 0.4 mg/100 g; black currant, 135 +/- 3 mg/100 g; bilberry, 360 +/- 3 mg/100 g; and Cabernet sauvignon red wine, 26.1 +/- 0.1 mg/100 mL.

PubMed Disclaimer

LinkOut - more resources