Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;82(Pt 10):2485-2494.
doi: 10.1099/0022-1317-82-10-2485.

Inhibition of release of lentivirus particles with incorporated human influenza virus haemagglutinin by binding to sialic acid-containing cellular receptors

Affiliations

Inhibition of release of lentivirus particles with incorporated human influenza virus haemagglutinin by binding to sialic acid-containing cellular receptors

Valerie Bosch et al. J Gen Virol. 2001 Oct.

Abstract

Mutants of the haemagglutinin (HA) gene of human influenza virus A/Aichi/2/68 (H3N2) encoding HA proteins that are proteolytically cleaved intracellularly, defective in binding to cellular receptors or defective for acylation within the cytoplasmic C terminus have been generated. Here, the properties of these mutated HA molecules are described and their incorporation into the lipid membrane of released human immunodeficiency virus (HIV)-like particles is analysed. It is demonstrated that, when produced from cells coexpressing any of the binding-competent Aichi-HA molecules, release of HIV-like particles into the extracellular medium is reduced and the particles that are released fail to incorporate Aichi-HA. These blocks in release and incorporation, respectively, can both be overcome. The release of normal amounts of particles with incorporated HA can be achieved either by mutation of the receptor-binding site on the Aichi-HA molecule or by removal of sialic acid from surface proteins with neuraminidase. In contrast, as a result of blockage of the sialic acid-binding site by sialidated oligosaccharides on the HA itself, the HA of influenza virus A/FPV/Rostock/34 (H7N1) is efficiently incorporated into HIV-like particles. These results, namely that particle release can be inhibited by interactions between the incorporated glycoprotein and the cell surface and/or that interactions with other cellular components can be inhibitory to incorporation into retrovirus envelopes, probably reflect general principles that may hold for many viral and cellular glycoproteins.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources