Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;106(1):69-78.
doi: 10.1016/s0306-4522(01)00262-7.

Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons

Affiliations

Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons

J H Tao-Cheng et al. Neuroscience. 2001.

Abstract

Treatment of cultured hippocampal neurons with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) in the absence of glucose mimics ischemic energy depletion and induces formation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) clusters, spherical structures with diameters of 75-175 nm [Dosemeci et al., J. Neurosci. 20 (2000) 3076-3084]. The demonstration that CaMKII clustering occurs in the intact, adult rat brain upon interruption of blood flow indicates that clustering is not confined to cell cultures. Application of N-methyl-D-aspartate (250 microM, 15 min) to hippocampal cultures also induces cluster formation, suggesting a role for Ca(2+). Indeed, intracellular Ca(2+) monitored with Fluo3-AM by confocal microscopy reaches a sustained high level within 5 min of CCCP treatment. The appearance of immunolabeled CaMKII clusters, detected by electron microscopy, follows the onset of the sustained increase in intracellular Ca(2+). Moreover, CaMKII does not cluster when the rise in intracellular Ca(2+) is prevented by the omission of extracellular Ca(2+) during CCCP treatment, confirming that clustering is Ca(2+)-dependent. A lag period of 1-2 min between the onset of high intracellular Ca(2+) levels and the formation of CaMKII clusters suggests that a sustained increase in Ca(2+) level is necessary for the clustering. CaMKII clusters disappear within 2 h of returning the cultures to normal incubation conditions, at which time no significant cell death is detected. These results indicate that pathological conditions that promote sustained episodes of Ca(2+) overload result in a transitory clustering of CaMKII into spherical structures. CaMKII clustering may represent a cellular defense mechanism to sequester a portion of the CaMKII pool, thereby preventing excessive protein phosphorylation.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources