Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;20(3):221-31.
doi: 10.1023/a:1010952025677.

Enzymatic autocatalysis of botulinum A neurotoxin light chain

Affiliations

Enzymatic autocatalysis of botulinum A neurotoxin light chain

S A Ahmed et al. J Protein Chem. 2001 Apr.

Abstract

Highly purified recombinant zinc-endopeptidase light chain of the botulinum neurotoxin serotype A underwent autocatalytic proteolytic processing and fragmentation. In the absence of added zinc, initially 10-28 residues were cleaved from the C-terminal end of the 448-residue protein followed by the appearance of an SDS-stable dimer and finally fragmentation near the middle of the molecule. In the presence of added zinc, the rate of fragmentation was accelerated but the specificity of the cleavable bond changed, suggesting a structural role for zinc in the light chain. The C-terminal proteolytic processing was reduced, and fragmentation near the middle of the molecule was prevented by adding the metal chelator TPEN to the light chain. Similarly, adding a competitive peptide inhibitor (CRATKML) of the light-chain catalytic activity also greatly reduced the proteolysis. With these results, for the first time, we provide clear evidence that the loss of C-terminal peptides and fragmentation of the light chain are enzymatic and autocatalytic. By isolating both the large and small peptides, we sequenced them by Edman degradation and ESIMS-MS, and mapped the sites of proteolysis. We also found that proteolysis occurred at F266-G267, F419-T420, F423-E424, R432-G433, and C430-V431 bonds in addition to the previously reported Y250-Y251 and K438-T439 bonds.

PubMed Disclaimer

References

    1. Biochemistry. 1998 Apr 14;37(15):5267-78 - PubMed
    1. J Biol Chem. 1992 Feb 25;267(6):3832-40 - PubMed
    1. FEBS Lett. 1998 Sep 11;435(1):61-4 - PubMed
    1. J Mol Biol. 1999 Sep 3;291(5):1091-104 - PubMed
    1. J Immunol. 2000 Sep 15;165(6):3232-8 - PubMed

MeSH terms

LinkOut - more resources