Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Aug 20;401(2):244-55.
doi: 10.1016/0005-2736(75)90308-9.

Lipid-protein interactions at the erythrocyte membrane. Different influence of glucose and sorbose on membrane lipid transition

Lipid-protein interactions at the erythrocyte membrane. Different influence of glucose and sorbose on membrane lipid transition

G Zimmer et al. Biochim Biophys Acta. .

Abstract

When observed over a temperature range, erythrocyte membrane lipids undergo a transition at 18-20 degrees C (Zimmer, G. and Schirmer, H. (1974) biochim. Biophys. Acta 345, 314-320). This observation has prompted an investigation of the effects that substrate binding has on the transition of the red cell membrane. Glucose and sorbose were compared, since transport kinetics of these sugars still pose unresolved questions. In membranes, preloaded with glucose, the break at the transition temperature was intensified, while it was abolished or reversed in membranes preloaded with sorbose. These results were corroborated using different solubilization procedures (sonication, sodium dodecyl sulfate treatment) of the membranes, and also different techniques (viscosimetry, 90 degrees light scattering, 1-anilino-naphthalene-8-sulfonate fluorescence). In extracted membrane lipids, viscosimetry indicated a break at transition temperature after preloading with either glucose or sorbose. Disc electrophoresis revealed a different binding pattern of the two sugars. It is suggested, that the amplification of the discontinuity in red cell membranes by glucose and the abolition or reversal of the break by sorbose are mediated by membrane protein- and/or membrane lipid-protein interaction.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources