Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons
- PMID: 11567037
- PMCID: PMC6762924
- DOI: 10.1523/JNEUROSCI.21-19-07474.2001
Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons
Abstract
Administration of cocaine and amphetamine increases cocaine- and amphetamine-regulated transcript (CART) expression in the rat striatum (Douglass et al., 1995). CART mRNA is highly expressed in different parts of the human and rat brain, including hippocampus (Douglass et al., 1995; Couceyro et al., 1997; Kuhar and Yoho, 1999; Hurd and Fagergren, 2000). The presence of CART peptide 55-102 immunoreactivity in dense core vesicles of axon terminals suggests that the peptide may be released and may act as a neuromodulator (Smith et al., 1997) to induce neurophysiological and behavioral effects. Little is known, however, about CART peptide-responsive cells, receptor(s), or intracellular signaling mechanisms that mediate CART peptide action. Here we show that CART peptide 55-102 inhibits voltage-dependent intracellular Ca(2+) signaling and attenuates cocaine enhancement of depolarization-induced Ca(2+) influx in rat hippocampal neurons. The inhibitory effect of CART peptide 55-102 on Ca(2+) signaling is likely mediated by an inhibition of L-type voltage-gated Ca(2+) channel activity via a G-protein-dependent pathway. These results indicate that voltage-gated Ca(2+) channels in hippocampal neurons are targets for CART peptide 55-102 and suggest that CART peptides may be important in physiology and behavior mediated by the hippocampus, such as certain forms of learning and memory.
Figures





References
-
- Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262:5592–5595. - PubMed
-
- Alkon DL, Nelson TJ, Zhao W, Cavallaro S. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends Neurosci. 1998;21:529–537. - PubMed
-
- Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000;25:515–532. - PubMed
-
- Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611. - PubMed
-
- Brewer GJ, Price PJ. Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. NeuroReport. 1996;7:1509–1512. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous