Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2001 Oct;91(4):1535-44.
doi: 10.1152/jappl.2001.91.4.1535.

Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions

Affiliations
Free article
Clinical Trial

Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions

C J Plaskett et al. J Appl Physiol (1985). 2001 Oct.
Free article

Abstract

Caffeine has known ergogenic effects, some of which have been observed during submaximal isometric contractions. We used 15 subjects in a randomized, double-blind, repeated-measures experiment to determine caffeine's ergogenic effects on neuromuscular variables that would contribute to increased endurance capacity. Subjects performed repeated submaximal (50% maximal voluntary contraction) isometric contractions of the right quadriceps to the limit of endurance (T(lim)) 1 h after oral caffeine administration (6 mg/kg). Time to reach T(lim) increased by 17 +/- 5.25% (P < 0.02) after caffeine administration compared with the placebo trial. The changes in contractile properties, motor unit activation, and M-wave amplitude that occurred as the quadriceps reached T(lim) could not account for the prolonged performance after caffeine ingestion. In a separate experiment with the same subjects, we used a constant-sensation technique to determine whether caffeine influenced force sensation during 100 s of an isometric contraction of the quadriceps. The results of this experiment showed that caffeine reduced force sensation during the first 10-20 s of the contraction. The rapidity of this effect suggests that caffeine exerts its effects neurally. Based on these data, the caffeine-induced increase in T(lim) may have been caused by a willingness to maintain near-maximal activation longer because of alterations in muscle sensory processes.

PubMed Disclaimer

Publication types

LinkOut - more resources