Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;63(2):196-207.
doi: 10.1093/toxsci/63.2.196.

Assessment of cisplatin-induced nephrotoxicity by microarray technology

Affiliations

Assessment of cisplatin-induced nephrotoxicity by microarray technology

Q Huang et al. Toxicol Sci. 2001 Oct.

Abstract

Microarrays are a new technology used to study global gene expression and to decipher biological pathways. In the current study, microarrays were used to examine gene expression patterns associated with cisplatin-mediated nephrotoxicity. Sprague-Dawley rats received either single or seven daily ip doses of cisplatin (0.5 or 1 mg/kg/day) or the inactive isomer transplatin (1 or 3 mg/kg/day). Histopathological evaluation revealed renal proximal tubular necrosis in animals that received cisplatin for 7 days, but no hepatotoxic findings. Microarray analyses were performed using rat specific arrays containing 250 toxicity-related genes. Prominent gene expression changes were observed only in the kidneys of rats that received cisplatin for 7 days. Mechanistically, the gene expression pattern elicited by cisplatin (e.g., Bax upward arrow and SMP-30 downward arrow) suggested the occurrence of apoptosis and the perturbation of intracellular calcium homeostasis. The induction of multidrug resistance genes (MDR1 upward arrow, P-gp upward arrow) and tissue remodeling proteins (clusterin upward arrow, IGFBP-1 upward arrow, and TIMP-1 upward arrow) indicated the development of cisplatin resistance and tissue regeneration. Select gene expression changes were further confirmed by TaqMan analyses. Gene expression changes were not observed in the liver following cisplatin administration. In contrast to these in vivo findings, studies using NRK-52E kidney epithelial cells and clone-9 liver cells suggested that liver cells were more sensitive to cisplatin treatment. The discrepancies between the in vivo and in vitro results suggest that caution should be taken when extrapolating data from in vivo to in vitro systems. Nonetheless, the current study elucidates the biochemical pathways involved in cisplatin toxicity and demonstrates the utility of microarrays in toxicological studies.

PubMed Disclaimer

Publication types

MeSH terms