Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;40(1):73-81.
doi: 10.1007/s002940100225.

Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi

Affiliations

Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi

J S Marshall et al. Curr Genet. 2001 Aug.

Abstract

The oomycete genus Phytophthora contains some of the world's most devastating plant pathogens. We report here the existence in P. cinnamomi of four genes encoding the pyrophosphate-utilizing glycolytic/gluconeogenic enzyme pyruvate, phosphate dikinase (PPDK). The coding regions of the four genes are >99% identical. At least three of the genes comprise a small gene cluster, which may have arisen through recent gene duplication and inversion events. Levels of Pdk mRNA are low in vegetative hyphae, but increase rapidly and transiently upon transfer of cultures to nutrient-free media, conditions that trigger asexual sporulation. PPDK protein and enzyme activity levels do not show a similar increase during sporulation. Assays of PPDK activity in P. cinnamomi hyphal extracts suggest that the majority of glycolytic flux in sporulating hyphae probably occurs via PPDK, rather than pyruvate kinase. This finding, combined with the existence of Phytophthora-expressed sequence tags encoding two other pyrophosphate-utilizing enzymes, indicates that pyrophosphate-based metabolism may be important in Phytophthora. The possibility that PPDK and other enzymes of pyrophosphate-based metabolism may provide targets for the development of novel control measures for Phytophthora and other oomycete pathogens is discussed.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources