Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 2;40(39):11866-75.
doi: 10.1021/bi011206v.

Peroxidases inhibit nitric oxide (NO) dependent bronchodilation: development of a model describing NO-peroxidase interactions

Affiliations

Peroxidases inhibit nitric oxide (NO) dependent bronchodilation: development of a model describing NO-peroxidase interactions

H M Abu-Soud et al. Biochemistry. .

Abstract

Recent studies demonstrate that nitric oxide (NO) serves as a physiological substrate for mammalian peroxidases [(2000) J. Biol. Chem. 275, 37524]. We now show that eosinophil peroxidase (EPO) and lactoperoxidase (LPO), peroxidases known to be enriched in airways of asthmatic subjects, function as a catalytic sink for NO, modulating its bioavailability and function. Using NO-selective electrodes and direct spectroscopic and rapid kinetic methods, we examined the interactions of NO with EPO and LPO compounds I and II and ferric forms and compared the results to those reported for myeloperoxidase. A unified kinetic model for NO interactions with intermediates of mammalian peroxidases during steady-state catalysis is presented that accommodates unique features observed with each member of the mammalian peroxidase superfamily. Potential functional consequences of peroxidase-NO interactions in asthma are investigated by utilizing organ chamber studies with tracheal rings. In the presence of pathophysiologically relevant levels of peroxidases and H(2)O(2), NO-dependent bronchodilation of preconstricted tracheal rings was reversibly inhibited. Thus, NO interaction with mammalian peroxidases may serve as a potential mechanism for modulating their catalytic activities, influencing the regulation of local inflammatory and infectious events in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources