Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 30;276(48):44695-703.
doi: 10.1074/jbc.M108088200. Epub 2001 Sep 25.

alpha-Latrotoxin, acting via two Ca2+-dependent pathways, triggers exocytosis of two pools of synaptic vesicles

Affiliations
Free article

alpha-Latrotoxin, acting via two Ca2+-dependent pathways, triggers exocytosis of two pools of synaptic vesicles

A C Ashton et al. J Biol Chem. .
Free article

Abstract

alpha-Latrotoxin stimulates three types of [(3)H]gamma-aminobutyric acid and [(14)C]glutamate release from synaptosomes. The Ca(2+)-independent component (i) is insensitive to SNAP-25 cleavage or depletion of vesicle contents by bafilomycin A1 and represents transmitter efflux mediated by alpha-latrotoxin pores. Two other components of release are Ca(2+)-dependent and vesicular but rely on distinct mechanisms. The fast receptor-mediated pathway (ii) involves intracellular Ca(2+) stores and acts upon sucrose-sensitive readily releasable vesicles; this mechanism is insensitive to inhibition of phosphatidylinositol 4-kinase (PI 4-kinase). The delayed pore-dependent exocytotic component (iii) is stimulated by Ca(2+) entering through alpha-latrotoxin pores; it requires PI 4-kinase and occurs mainly from depot vesicles. Lanthanum perturbs alpha-latrotoxin pores and blocks the two pore-mediated components (i, iii) but not the receptor-mediated release (ii). alpha-Latrotoxin mutant (LTX(N4C)) cannot form pores and stimulates only the Ca(2+)-dependent receptor-mediated amino acid exocytosis (ii) (detectable biochemically and electrophysiologically). These findings explain experimental data obtained by different laboratories and implicate the toxin receptors in the regulation of the readily releasable pool of synaptic vesicles. Our results also suggest that, similar to noradrenergic vesicles, amino acid-containing vesicles at some point in their cycle require PI 4-kinase.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources