Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;109(1):52-5.
doi: 10.1055/s-2001-11019.

Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

Affiliations

Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

J W Smit et al. Exp Clin Endocrinol Diabetes. 2001.

Abstract

The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (hNIS) is frequently observed in metastasized thyroid cancer. So far, no animal model for the study of radioiodine therapy in thyroid cancer has been available. Strategies to restore iodide uptake in thyroid cancer include the exploration of hNIS gene transfer into hNIS defective thyroid cancer. We have performed a stable transfection of hNIS into the hNIS defective follicular thyroid carcinoma cell line FTC133. Stably transfected colonies exhibited high uptake of Na125I, which could be blocked completely with sodium perchlorate. hNIS transfected FTC133 and non-transfected cell lines injected subcutaneously in nude mice formed tumors after 6 weeks. Iodide uptake in the hNIS transfected tumor was much higher than in non-transfected tumor, but a rapid release of radioactivity from the hNIS transfected tumor was observed. Further studies are necessary to investigate the role of hNIS in relation to other thyroid specific proteins in iodide metabolism in thyroid cancer.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources