Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;22(22):2959-66.
doi: 10.1016/s0142-9612(01)00042-4.

The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro

Affiliations

The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro

G I Howling et al. Biomaterials. 2001 Nov.

Abstract

The effects of chitin [(1 --> 4)-2-acetamido-2-deoxy-beta-D-glucan] and its partially deacetylated derivatives, chitosans, on the proliferation of human dermal fibroblasts and keratinocytes were examined in vitro. Chitosans with relatively high degrees of deacetylation strongly stimulated fibroblast proliferation while samples with lower levels of deacetylation showed less activity. Fraction, CL313A, a shorter chain length, 89% deacetylated chitosan chloride was further evaluated using cultures of fibroblasts derived from a range of human donors. Some fibroblast cultures produced a positive mitogenic response to CL313A treatment with proliferation rates being increased by approximately 50% over the control level at an initial concentration of 50 microg/ml, whilst others showed no stimulation of proliferation or even a slight inhibition (< 10%). The stimulatory effect on fibroblast proliferation required the presence of serum in the culture medium suggesting that the chitosan may be interacting with growth factors present in the serum and potentiating their effect. In contrast to the stimulatory effects on fibroblasts, fraction CL313A inhibited human keratinocyte mitogenesis with up to 40% inhibition of proliferation being observed at 50 microg/ml. In general highly deacetylated chitosans were more active than those with a lower degree of deacetylation. These data demonstrate that highly deacetylated chitosans can modulate human skin cell mitogenesis in vitro. Analysis of their effects on cells in culture may be useful as a screen for their potential activity in vivo as wound healing agents, although in the case of fibroblasts it is important to select appropriate strains of cells for use in the screen.

PubMed Disclaimer

Publication types

LinkOut - more resources