Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 30;276(48):44495-501.
doi: 10.1074/jbc.M105945200. Epub 2001 Sep 27.

p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response

Affiliations
Free article

p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response

P M Barger et al. J Biol Chem. .
Free article

Abstract

The expression of enzymes involved in fatty acid beta-oxidation (FAO), the principal source of energy production in the adult mammalian heart, is controlled at the transcriptional level via the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Evidence has emerged that PPARalpha activity is activated as a component of an energy metabolic stress response. The p38 mitogen-activated protein kinase (MAPK) pathway is activated by cellular stressors in the heart, including ischemia, hypoxia, and hypertrophic growth stimuli. We show here that PPARalpha is phosphorylated in response to stress stimuli in rat neonatal cardiac myocytes; in vitro kinase assays demonstrated that p38 MAPK phosphorylates serine residues located within the NH(2)-terminal A/B domain of the protein. Transient transfection studies in cardiac myocytes and in CV-1 cells utilizing homologous and heterologous PPARalpha target element reporters and mammalian one-hybrid transcription assays revealed that p38 MAPK phosphorylation of PPARalpha significantly enhanced ligand-dependent transactivation. Cotransfection studies performed with several known coactivators of PPARalpha demonstrated that p38 MAPK markedly increased coactivation specifically by PGC-1, a transcriptional coactivator implicated in myocyte energy metabolic gene regulation and mitochondrial biogenesis. These results identify PPARalpha as a downstream effector of p38 kinase-dependent stress-activated signaling in the heart, linking extracellular stressors to alterations in energy metabolic gene expression.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources