Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 14;276(50):47460-7.
doi: 10.1074/jbc.M105133200. Epub 2001 Sep 28.

The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism

Affiliations
Free article

The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism

G Shohat et al. J Biol Chem. .
Free article

Abstract

Death-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of Ser(308) within the calmodulin (CaM)-regulatory domain, which occurs at basal state, in the absence of Ca(2+)/CaM, and is inversely correlated with substrate phosphorylation. This type of phosphorylation takes place in growing cells and is strongly reduced upon their exposure to the apoptotic stimulus of C(6)-ceramide. The substitution of Ser(308) to alanine, which mimics the ceramide-induced dephosphorylation at this site, increases Ca(2+)/CaM-independent substrate phosphorylation as well as binding and overall sensitivity of the kinase to CaM. At the cellular level, it strongly enhances the death-promoting activity of the kinase. Conversely, mutation to aspartic acid reduces the binding of the protein to CaM and abrogates almost completely the death-promoting function of the protein. These results are consistent with a molecular model in which phosphorylation on Ser(308) stabilizes a locked conformation of the CaM-regulatory domain within the catalytic cleft and simultaneously also interferes with CaM binding. We propose that this unique mechanism of auto-inhibition evolved to impose a locking device, which keeps death-associated protein kinase silent in healthy cells and ensures its activation only in response to apoptotic signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources