Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Summer;106(2):119-24.
doi: 10.1002/ajmg.1576.

Chromosome imbalances associated with epilepsy

Affiliations
Review

Chromosome imbalances associated with epilepsy

A Schinzel et al. Am J Med Genet. 2001 Summer.

Abstract

Epilepsy is among the most frequent findings in many, especially autosomal, chromosome aberrations. Its incidence, however, is very variable, and there are very few aberrations in which epilepsy is a constant finding. Even siblings and monozygotic twins with the same aberration are often discordant for seizure disorders. Similar observations can be made for congenital (major) malformations in chromosome aberrations. The common explanation is that in these instances epilepsy is not caused by the action of a single gene in single or triple dose, but is influenced by the combined action of a number of genes within and outside of the aneuploid segment. The situation is comparable to a polygenic model of inheritance. Gene mutations associated with epilepsy are known, to date, only for two disorders: the lissencephaly 1 gene in Miller-Dieker syndrome and mutations in the UBE3A gene in Angelman syndrome. Chromosome aberrations in which epilepsy is a major and consistent finding include Angelman syndrome due to loss of the maternal 15q11.2-q12 segment, tetrasomy of the maternal segment 15pter-q13 due to an additional inv dup chromosome, Miller-Dieker syndrome due to deletion of the 17p13.3 segment including the lissencephaly1 gene, ring chromosome 20, and Wolf-Hirschhorn syndrome due to deletion of at least the 4p16.3 segment.

PubMed Disclaimer