Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;38(5):711-9.
doi: 10.1603/0022-2585-38.5.711.

Bacterial and fungal biomass responses to feeding by larval Aedes triseriatus (Diptera: Culicidae)

Affiliations

Bacterial and fungal biomass responses to feeding by larval Aedes triseriatus (Diptera: Culicidae)

M G Kaufman et al. J Med Entomol. 2001 Sep.

Abstract

We investigated the effect of different densities (0, 20, or 40) of developing larval Aedes triseriatus (Say) on bacterial abundance, bacterial productivity, and leaf fungal biomass in a microcosm experiment. Larvae in the low-density treatment developed normally, but larvae at the high density were significantly slower to develop. Both bacterial abundance (direct microscopic counts) and bacterial productivity (3H-leucine incorporation rates) on leaf material were significantly lower in the presence of larvae. Bacterial abundance in the water column did not change significantly with treatment, but bacterial productivity varied with time and declined significantly at both larval densities. Bacteria on the walls and bottom of the containers also were less abundant and significantly less productive in the presence of larvae. Aside from presence/absence effects, there was no clear evidence that larval impacts were density-dependent. Leaf-associated fungal biomass, as measured by ergosterol levels, varied with time but was not significantly affected by any treatment, suggesting most fungal tissue was incorporated in the leaf matrix and unavailable to larvae. Based upon estimated biomass accrual and respiration of larvae, it appears that bacterial biomass and production were insufficient to account for carbon demands of growing larvae. Because fungal biomass and leaf mass likely contributed little to gross larval demands, other carbon sources (e.g., protozoa and extracellular microbial components) were probably used by larvae. Although apparently insufficient for all larval carbon demands, bacterial and leaf fungal biomass may be adequate for other larval nutritional needs (i.e., nitrogen and essential lipids).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources