Long-wavelength instabilities of three-dimensional patterns
- PMID: 11580429
- DOI: 10.1103/PhysRevE.64.036214
Long-wavelength instabilities of three-dimensional patterns
Abstract
Long-wavelength instabilities of steady patterns, spatially periodic in three dimensions, are studied. All potentially stable patterns with the symmetries of the simple-, face-centered- and body-centered-cubic lattices are considered. The results generalize the well-known Eckhaus, zigzag, and skew-varicose instabilities to three-dimensional patterns and are applied to two-species reaction-diffusion equations modeling the Turing instability.
Similar articles
-
Coexistence of Eckhaus instability in forced zigzag Turing patterns.J Chem Phys. 2008 Sep 21;129(11):114508. doi: 10.1063/1.2977990. J Chem Phys. 2008. PMID: 19044970
-
Skew-varicose instability in two-dimensional generalized Swift-Hohenberg equations.Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036201. doi: 10.1103/PhysRevE.84.036201. Epub 2011 Sep 6. Phys Rev E Stat Nonlin Soft Matter Phys. 2011. PMID: 22060469
-
Transverse instabilities in chemical Turing patterns of stripes.Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 2):056206. doi: 10.1103/PhysRevE.68.056206. Epub 2003 Nov 18. Phys Rev E Stat Nonlin Soft Matter Phys. 2003. PMID: 14682870
-
Influence of oscillatory centrifugal forces on the mechanism of Turing pattern formation.Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012917. doi: 10.1103/PhysRevE.91.012917. Epub 2015 Jan 21. Phys Rev E Stat Nonlin Soft Matter Phys. 2015. PMID: 25679692
-
Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.Chaos. 2014 Dec;24(4):043142. doi: 10.1063/1.4905017. Chaos. 2014. PMID: 25554062
Cited by
-
On multiscale approaches to three-dimensional modelling of morphogenesis.J R Soc Interface. 2005 Jun 22;2(3):237-53. doi: 10.1098/rsif.2005.0033. J R Soc Interface. 2005. PMID: 16849182 Free PMC article.