Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles
- PMID: 11583950
- PMCID: PMC1850519
- DOI: 10.1016/S0002-9440(10)62509-6
Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles
Abstract
Molecular classification of tumors based on their gene expression profiles promises to significantly refine diagnosis and management of cancer patients. The establishment of organ-specific gene expression patterns represents a crucial first step in the clinical application of the molecular approach. Here, we report on the gene expression profiles of 154 primary adenocarcinomas of the lung, colon, and ovary. Using high-density oligonucleotide arrays with 7129 gene probe sets, comprehensive gene expression profiles of 57 lung, 51 colon, and 46 ovary adenocarcinomas were generated and subjected to principle component analysis and to a cross-validated prediction analysis using nearest neighbor classification. These statistical analyses resulted in the classification of 152 of 154 of the adenocarcinomas in an organ-specific manner and identified genes expressed in a putative tissue-specific manner for each tumor type. Furthermore, two tumors were identified, one in the colon group and another in the ovarian group, that did not conform to their respective organ-specific cohorts. Investigation of these outlier tumors by immunohistochemical profiling revealed the ovarian tumor was consistent with a metastatic adenocarcinoma of colonic origin and the colonic tumor was a pleomorphic mesenchymal tumor, probably a leiomyosarcoma, rather than an epithelial tumor. Our results demonstrate the ability of gene expression profiles to classify tumors and suggest that determination of organ-specific gene expression profiles will play a significant role in a wide variety of clinical settings, including molecular diagnosis and classification.
Figures



References
-
- Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tram T, Yu X, Powel JI, Yang L, Marti GE, Moore T, Hudson J, Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Cahn WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403:503-511 - PubMed
-
- Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V, Hayward N, Trent J: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000, 406:536-540 - PubMed
-
- Ripley B: Pattern Recognition and Neural Networks. Cambridge University Press, 1996
-
- Sheibani K, Tubbs RR: Enzyme immunohistochemistry. Technical aspects. Semin Diagn Pathol 1984, 1:235-250 - PubMed
-
- Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical