Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 30;276(48):44812-9.
doi: 10.1074/jbc.M104425200. Epub 2001 Oct 2.

Cellular energetics in the preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR

Affiliations
Free article

Cellular energetics in the preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR

D Pucar et al. J Biol Chem. .
Free article

Abstract

Cell survival is critically dependent on the preservation of cellular bioenergetics. However, the metabolic mechanisms that confer resistance to injury are poorly understood. Phosphotransfer reactions integrate ATP-consuming with ATP-producing processes and could thereby contribute to the generation of a protective phenotype. Here, we used ischemic preconditioning to induce a stress-tolerant state and (18)O-assisted (31)P nuclear magnetic resonance spectroscopy to capture intracellular phosphotransfer dynamics. Preconditioning of isolated perfused hearts triggered a redistribution in phosphotransfer flux with significant increase in creatine kinase and glycolytic rates. High energy phosphoryl fluxes through creatine kinase, adenylate kinase, and glycolysis in preconditioned hearts correlated tightly with post-ischemic functional recovery. This was associated with enhanced metabolite exchange between subcellular compartments, manifested by augmented transfer of inorganic phosphate from cellular ATPases to mitochondrial ATP synthase. Preconditioning-induced energetic remodeling protected cellular ATP synthesis and ATP consumption, improving contractile performance following ischemia-reperfusion insult. Thus, the plasticity of phosphotransfer networks contributes to the effective functioning of the cellular energetic system, providing a mechanism for increased tolerance toward injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources